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Multiscale Properties of Weighted Total Variation
Flow with Applications to Denoising and

Registration
Prashant Athavale*, Robert Xu, Perry Radau, Graham Wright, and Adrian Nachman

Abstract—In this paper we investigate the multiscale nature
of weighted total variation (TV) flow. The resulting understand-
ing leads to novel fast denoising and registration algorithms.
We show that the weighted TV flow can be derived from a
hierarchical decomposition of a given image. We show that
the edge-preserving property of the multiscale representation of
an input image obtained with the TV flow can be enhanced
and localized by appropriate choice of weights. We use this in
developing an efficient and edge-preserving denoising algorithm
with control on speed and localization properties. We examine
analytical properties of the weighted TV flow that give precise
information on the rate of decrease of the noise and of the
energy of the image. A further contribution of the paper is to
use the images obtained at different scales for robust multiscale
registration. We demonstrate that on noisy cardiac MRI images
the use of weighted TV flow as a preprocessing step in multiscale
registration algorithm shows improved performance, compared
to other methods such as bilateral or Gaussian filtering.

Index Terms—Magnetic resonance imaging (MRI), total vari-
ation flow, fast denoising, multiscale registration, normalized
gradient field, mutual information.

I. INTRODUCTION

Image denoising is an important problem, particularly to
achieve high-resolution, 3D accelerated MRI acquisitions (see
[2], [54], [23]). Denoising via unconstrained optimization,
introduced in [39], can be realized as decomposition [31] of
a given image into a smooth part that belongs to the space of
bounded variation (BV ) and an L2 residual. The goal of this
paper is to propose a novel multiscale representation based on
hierarchical (BV,L2) decomposition. Our approach is moti-
vated by successive application of the (BV,L2) decomposition
to the BV parts obtained at increasing scale. We show that
this approach is closely related to a well-studied problem of
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total variation (TV) flow [4]. In section II we present the
mathematical motivation behind the multiscale framework of
the weighted TV and its properties. We demonstrate denoising
applications in section III and registration applications (cf. [8],
[53]) in section IV.

A. Scale-Space Structure of Images with PDE Based Methods

One of the earliest PDE-based methods for denoising [47]
and multiscale representation [29] of a given image f : Ω→ R
for a bounded region Ω in a plane is the heat equation,

∂u

∂t
= ∆u; u ≡ u(x, t) : Ω× R+ 7→ R,

∂u

∂ν

∣∣∣
Γ

= 0,

where u(·, 0) := f and ∂u
∂ν

∣∣
Γ

denotes the outward normal
to the boundary Γ of the region Ω. This yields a family
of images, {u(·, t) : Ω → R}t≥0, which can be viewed as
smoothed versions of f . In this linear framework, smoothing
is implemented by a convolution with the two-dimensional
Gaussian kernel, Gσ(x) = 1

2πσ2 exp
(
− |x|

2

2σ2

)
, with standard

deviation σ =
√

2t. Hence, details with a scale smaller
than

√
2t are smoothed out. Here, λ(t) :=

√
2t acts as a

scaling function. We can say that {u(·, t)}t≥0 is a multiscale
representation of f , as u(·, t) diffuses from the small scales
in f into increasingly larger scales.

Image denoising by the heat equation is based on isotropic
diffusion, and consequently blurs all edges, which often con-
tain useful information about the image. This drawback was
addressed by the Perona-Malik (PM) model [36], which is
based on nonlinear diffusion

∂u

∂t
= div(α(|∇u|)∇u); u : Ω× R+ 7→ R,

∂u

∂ν

∣∣∣
Γ

= 0, (1)

with an initial condition u(·, 0) := f . Here, the diffusion
controlling function, α is decreasing and vanishing at infinity,
so that the amount of diffusion decreases as the gradient |∇u|
increases. Thus, α is responsible for the anisotropic nature of
the PM model. The family of PM models are not well-posed
[13]. They also pose a problem for noisy images, since noise
produces high gradients, which can be confused with relevant
edges. These shortcomings were removed by Catté et al. [13]
by replacing α(|∇u|) with α(|Gσ ∗ ∇u|), where Gσ ∗ ∇u
denotes convolution of the two-dimensional Gaussian kernel
Gσ .

The Perona-Malik equation (1) is closely related to the
bilateral filtering method [48]. In fact, it has been shown to
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be asymptotically equivalent to bilateral filtering [44]. The
idea of bilateral filtering is to combine the low-pass filtering
with range filtering. Given image f , the bilateral filtering is
described as follows

h(x) = k−1(x)

∫ ∞
−∞

f(ζ)c(ζ, x)s(f(ζ), f(x)) dζ

where c(x, ζ) measures the geometric closeness between
the neighborhood center x and a nearby point ζ, whereas
s(f(ζ), f(x)) measures the photometric similarity between the
pixels at the neighborhood center x and a nearby point ζ, and
k−1(x) is a normalization factor. For the Gaussian filtering
case, both c and s are Gaussian functions of the Euclidean
distance between their arguments. Bilateral filtering is known
to preserve edges and produces a 2-dimensional multiscale
representation of the function f , depending on the parameters
σd and σr.

B. Scale-Space Structure of Images with Variational Methods

Rudin, Osher and Fatemi introduced [39] a variational
framework for denoising an image f which can be formulated
as the following (BV,L2) decomposition [31], [46] of an
image f into a regular part uλ and a noisy residual vλ:

f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{
|u|TV (Ω) + λ ‖v‖2L2(Ω)

}
,

(2)
where |u|TV (Ω) is the total variation or the BV seminorm
of u (see [20]), and λ determines the relative weighing of
the regularization and the fidelity term. This minimization
problem has a unique minimizer, uλ ∈ BV (Ω) (see [1],
[14], [49]). The solution to the minimization problem (2)
depends on the scale parameter λ. More precisely ‖v‖∗ = 1

2λ ,
where the star-norm, ‖·‖∗, is defined as the dual of the BV
seminorm with respect to the L2 inner product [31]. Thus, the
solution u of (2) has different scale for different λ. The best
value of the parameter λ is difficult to determine a priori.
Instead, in a seminal paper [46], the authors proposed to
work with multiscale representations of images. While the
emphasis in [46] was to progressively extract details of the
image, we treat the multiscale approach as progressive removal
of small-scale structures. Furthermore, we extend the results
of [46] to continuous multiscale decompositions. We also (in
parallel with [7] and [45]) allow for inhomogeneous weights
in the regularization functional. This will be helpful for both
denoising as well as registration methods. On one hand, since
noise tends to consist of small-scale structures, removal of
such details can yield a denoising algorithm; on the other hand,
removal of small features is helpful in obtaining a good initial
registration transformation, which can be progressively im-
proved by working at different scales. We were able to obtain
fast denoising and registration algorithms by considering the
continuous limit of multiscale representations. For the inverse
multiscale representation this limit was first studied in [45].

II. RELATIONSHIP OF MULTISCALE DECOMPOSITION AND
THE TOTAL VARIATION (TV) FLOW

It is very helpful to consider more general decompositions
than (2), with the BV seminorm replaced by a convex func-

tional J(u) which will allow the flexibility of inhomogeneous
weighing:

f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{
J(u) + λ ‖v‖2L2

}
. (3)

Motivated by [46] we start by decomposing the original f
using the parameter λ1 to obtain the initial decomposition,
f = uλ1

+ vλ1
. However, we choose the initial parameter λ1

large enough so that uλ1
preserves most of the features of

f . Using another scaling parameter λ2 < λ1 we obtain the
decomposition of uλ1 as uλ1 = uλ2 + vλ2 . If we continue
this process iteratively, each time decomposing the uλi part
with λi < λi−1, we obtain the following nonlinear multiscale
decomposition

f = uλ1
+ vλ1

= uλ2
+ vλ2

+ vλ1

= . . .

= uλN +

N∑
i=1

vλi . (4)

The idea is to terminate the iteration at the N th step, when
the cumulative residual,

∑N
i=1 vλi , reaches a desired level.

We next derive the continuous limit of the above multiscale
decomposition. The Euler-Lagrange differential equation for
(3) is

0 ∈ ∂J(uλ) + 2λ(uλ − f). (5)

For a lower semicontinuous, proper convex functional J the
subgradient ∂J(u) = A(u), is a maximal monotone operator
[11], and we can rewrite (5)

f = uλ +
1

2λ
A(uλ)⇔ uλ =

(
Id +

1

2λ
A
)−1

f.

Going towards the continuous model, in the hierarchical
decomposition (4), we replace the scale parameter sequence
{λi} with {λiτ } cf. [45], where τ denotes the time-step. With
this notation (4) can be written as

uλN =
[ N∏
i=1

(
Id +

τ

2λi
A
)−1]

f.

Let λ(·) denote a positive real-valued function and the scale
parameter λi = λ(iτ). We know from the semigroup genera-
tion theory (see [18], Theorem A) that the limit

lim
N→∞

[ N∏
i=1

(
Id +

τ

2λi
A
)−1]

f = u(·, t)

exists for all t ∈ [0,∞), with τ = t
N and it solves the

following differential equation

∂u

∂t
= − 1

2λ(t)
A(u), u(·, 0) = f,

∂u

∂ν

∣∣∣
Γ

= 0. (6)
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A. Weighted TV Flow

While the derivation above is quite general, we will work
with a functional J(u) that is suitable for image processing.
The choice of J(u) as the weighted bounded variation (BV )
seminorm was previously considered in [42], [43] for its edge-
preserving properties. Properties of the weighted BV spaces
and the corresponding minimization with L2 fidelity term
were investigated in [15]. Motivated by the edge-preserving
properties of the weighted TV minimization, we consider the
weighted BV seminorm, J(u) =

∫
Ω
α|∇u|. Following [5]

and [6], the operator − div
(
α∇u
|∇u|

)
∈ A(u) = ∂J(u) is

understood in the sense that for any u ∈ BVα(Ω)∩L2(Ω) there
exists a bounded vector field z with the properties: div(z) ∈
L2(Ω), ‖|z|l2‖L∞ ≤ 1, A(u) = −div(αz) in D′(Ω), satisfy-
ing ∫

Ω

αz · ∇u = |u|TVα(Ω),

where the weighted BV seminorm, |u|TVα(Ω) is defined as

|u|TVα(Ω) :=

sup
{∫

Ω

udiv(α ξ) dx : ξ ∈ C1
c (Ω,R2), ‖|ξ|l2‖L∞(Ω) ≤ 1

}
.

The Neumann boundary condition will be written in the form
[z, ν] = 0 on ∂Ω. With J(u) = |u|TVα(Ω) we say that the
decomposition (3) is a (BVα, L

2) decomposition and, with
A(u) = −div

(
α∇u
|∇u|

)
in (6), leads to the weighted TV flow

∂u

∂t
= µ(t) div

(α∇u(·, t)
|∇u(·, t)|

)
; (7)

u : Ω× R+ 7→ R,
∂u

∂ν

∣∣∣
Γ

= 0, u(·, 0) = f,

where we define µ(t) := 1
2λ(t) for convenience. Note that, the

weighted TV flow (7) is closely related to the standard TV
flow

∂û

∂t
= div

( ∇û(·, t)
|∇û(·, t)|

)
; (8)

û : Ω× R+ 7→ R,
∂û

∂ν

∣∣∣
Γ

= 0, û(·, 0) = f,

which has been extensively studied and is known to have a
unique solution for f ∈ L1(Ω) (see [3], [4], [5]). Indeed, if
α ≡ 1 and γ(t) =

∫ t
0
µ(s) ds, then u(·, t) = û(·, γ(t)). See

[35], [28] for applications of TV flow in medical imaging.

B. Designing the Edge-preserving Weighted TV Filter

The method based on the weighted functional has the flex-
ibility to allow for weights α chosen according to the image
processing problem at hand. If the objective is to preserve
edges, then the weight α can be chosen to be small when the
gradient of the image is large. To avoid mischaracterization
of noise as edges, we often work with the convolution of the
original image by a Gaussian kernel (or any smoothing kernel)
with small variance. Thus we define

α(x) =
1√

1 + |∇Gσ ∗ f |2/β2
,

where σ denotes the standard deviation of the Gaussian kernel
Gσ and for some β ∈ R. The value of β is chosen so that α
attains a small value at the most prominent edge in the image.
These types of edge detecting functions [36], [9] are common
in the image processing literature.

We observe that for f ∈ [0, 1], the maximum possible jump
in the image (i.e. max |∇Gσ ∗f |) can not exceed 1. To ensure
that the weight α = α0 at this jump, we set β = α0. In this
paper, the value of β was set at 0.07, and the speed function
is chosen as µ(t) = 1.01t unless otherwise mentioned.

Alternatively, the weight α can be used to select the region
where the noise is a major concern. For example, one can
choose α = Gσ ∗χA, where A indicates the region of interest,
where denoising is needed.

C. Comparison Between Weighted TV Flow and Standard TV
Flow

In this section we compare the edge-preserving property of
the weighted TV flow (7) and the standard TV flow (8). The
weight α(x) in (7) can be thought of as a local adaptivity
control (cf. [43]). With an appropriate choice of the weight
α we can improve the edge preservation. We demonstrate
this property in Fig. 1. We added a Gaussian noise to a
one dimensional synthetic image shown in Fig. 1(b). Then
we performed denoising using standard TV flow and the
weighted TV flow (β = 0.05) with the same stopping criterion
(estimated peak signal-to-noise ratio1 (PSNR) = 31 dB). To
solve (7) and (8) numerically, we used a semi-implicit scheme
[46] to discretize the divergence term in (7) (see also [33],
[38], [10]). We see in Fig. 1(c) and (d) that the edges are
better preserved with the weighted TV flow. We observe in
Fig. 2 that the intensity of the peak is also better preserved in
the case of weighted TV flow in comparison to the standard
TV flow. This feature is important MR images as the intensity
is related to the tissue type [19], [26], and changes in intensity
may result in tissue mischaracterization.

D. Convergence to the Average Value in Finite Time

We observe that for the weighted TV flow (7) the function
u(·, t) has the same average value as that of the original image
f at any time. This property is inherited from the standard TV
flow [4]. Moreover, we know from [4] that for the standard
TV flow (8), û(·, t) approaches the average of the function f
i.e. û(·, t) → favg := −

∫
Ω
f , in finite time and the flow u(·, t)

in (7) also exhibits this property.

III. MULTISCALE DENOISING APPLICATIONS

Noise is present in many imaging techniques and its nature
differs from one modality to another. In an additive noise
model, the given image f is the sum of the clean image,
u, and some additive noise, v. Generally, we do not know
the structure of the noise a priori. Nevertheless in most
cases, noise is a small-scale component compared to the scale
of other components in the clean image, u. The proposed

1PSNR(u, f) = 10 log10
MN∑N

j=1

∑M
i=1 (ui,j−fi,j)2

, where u and f are

images of size M ×N .
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(a) Original synthetic image
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(b) Original image with noise
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(c) Denoising with standard TV flow
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(d) Denoising with weighted TV flow

Fig. 1. The original image is shown in (a) and the image with additive
Gaussian noise is depicted in (b). The noisy image in (b) is then denoised
with the standard TV flow, shown in (c). Compare it with the results of the
weighted TV flow in (d), where the edges are better preserved. Also note that
the intensity of the flat regions is also better preserved with the weighted TV
flow.
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denoised with standard TV flow

denoised with weighted TV flow

Change in intensity

Fig. 2. Denoising result of standard TV flow and weighted TV flow
superimposed. The dotted line shows the result of standard TV flow, and
the solid line shows the result of weighted TV flow. We see that the weighted
TV flow better maintains the intensity profile than the TV flow.

multiscale weighted TV flow (7) can be a valuable tool in
denoising, where for small times t, the flow u(·, t) is obtained
by removing only finer scales from the image f . Thus, the
weighted TV flow (7) can be effectively applied for denoising
an image, while edge preservation is enhanced due to the
weight α.

A. Stopping Criterion

The multiscale family {u(t)}t≥0, produced by the weighted
TV flow is a single-parameter family of progressively
smoother images. Indeed, we can show (see Proposition
B.3) that the weighted TV seminorm of the flow u(t) de-
creases monotonically with time, indicating that u(t) becomes
smoother over time. In fact u(t) reaches a constant in finite
time. For the purpose of denoising we need to decide on
the stopping time tc such that the u(tc) provides us with
a denoised version of the given image f . We also observe
in Proposition B.4 that the L2 energy of the flow u(t) also
decreases monotonically with time and that the α∗ norm of
the residual v(t) is bounded by

∫ t
0
µ(s) ds (Proposition B.4).

Nevertheless, it is difficult to prescribe the stopping time
based on the L2 energy of u(t) or the α∗ norm of the
residual v(t). Instead we propose to choose the stopping time,
tc, as the least time when the peak signal-to-noise ratio,
PSNR(u(t), f) falls below the estimated PSNR (see [22], [17]
for noise estimation), thus making ‘estimated PSNR’ as the
only denoising parameter .

B. Fast Denoising

In this section we show that the selection of the speed
function µ(t) in (7) determines the speed of denoising. To
this effect we define the weighted star-norm [5] as the dual of
the weighted TV seminorm, i.e.

‖v‖α∗ := sup
ϕ∈BVα(Ω)
|ϕ|TVα(Ω) 6=0

{ (v, ϕ)L2(Ω)

|ϕ|TVα(Ω)

}
. (9)
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We show in Proposition B.1 that the speed of the weighted
TV flow, measured in α∗ norm is precisely given by the speed
function µ(t). This suggests that we can perform fast denoising
by selecting a rapidly increasing speed function. Indeed, this
can be observed in experiments with different speed functions,
summarized in Table I. We note that the speed is limited only
by time discretization. We used the standard Shepp-Logan
phantom (scaled in the range [0, 1]) with additive Gaussian
noise of zero mean and variance 0.005. The stopping criterion
was PSNR(u(t), f) < 25 dB.

C. Comparative Study Between Weighted TV Flow and Bilat-
eral Filter

The edge-preserving feature and speed of denoising are the
main properties of the weighted TV flow. The edge detecting
function α that we chose in Sec. II-B is similar in nature to
a function used by the Perona-Malik model [36], [13], which
is an anisotropic diffusion method. We found that it performs
qualitatively similar to the bilateral filter. In fact, it is shown
in [44] that the bilateral filter is asymptotically equivalent to
Perona-Malik filter. Thus, in this paper we chose to compare
our method with bilateral filtering.

D. Phantom Experiments Comparing to Bilateral Filter

We performed denoising experiments with the Shepp-Logan
phantom, with an additive Gaussian noise of zero mean
and varying standard deviations σ. The estimated PSNR
= 10 log(1/σ2) was used as a stopping criterion for denoising
with the weighted TV flow. Then we used bilateral filtering
for denoising. To have a fair comparison, we adjusted the
parameters of bilateral filters, σ1 and σ2 through an extensive
2D search, to obtain denoised images with the same PSNR as
that obtained with weighted TV flow.

To examine image quality quantitatively, we looked at the
contrast-to-noise ratio (CNR) [41] of the denoised images
with respect to the clean Shepp-Logan phantom image. The
CNRAB is computed2 for the regions A and B, as annotated
in Fig. 3(a). The experiment was repeated 50 times for each
variance. The average values of the CNR for bilateral filter
and the weighted TV flow are shown in Table II. We observe
that the weighted TV flow yields higher CNR images than
bilateral filtering.

TABLE I
FUNCTION µ(t) DETERMINES THE SPEED OF THE WEIGHTED TV FLOW.

µ(t) PSNR (dB) time (ms)

0.5t 24.45 199
1 24.29 160
10t 24.12 110
100t 23.98 98
101+t 23.91 87

2CNR is computed with the formula: CNRAB = |µA − µB |/σ, where
µA, µB are the mean values of the intensities in regions A and B respectively,

and σ =

√
σ2
A
+σ2

B
2

with σA, σB indicating the standard deviations in
regions A and B respectively.

(a) (b)

(c) (d)

Fig. 3. Comparison between the bilateral filter and the proposed weighted TV
flow in denoising. (a) Shepp-Logan phantom, (b) Noisy image, σ2 = 0.002,
(c) Denoising with bilateral filter (average CNRAB = 6.62), (d) Denoising
with weighted TV flow (average CNRAB = 21.08).

TABLE II
DENOISING RESULTS FOR THE SHEPP-LOGAN PHANTOM

Noise PSNR Avg. CNRAB with Avg. CNRAB with
(σ2) dB bilateral filter weighted TV flow

0.0008 30.96 8.50 24.42
0.0010 30.00 8.22 23.17
0.0020 26.98 6.62 21.08
0.0025 26.02 6.33 21.04
0.0050 23.01 5.34 19.40

Image denoising with edge preservation could be used as
an important preprocessing step in the problem of image reg-
istration. We discuss this application in the following section.

IV. APPLICATIONS TO REGISTRATION

We have seen in section II that the weighted TV flow
is obtained as a limiting case of a hierarchical multiscale
decomposition, which makes it suitable for extracting different
scales from given images. In this section, we demonstrate the
use of the multiscale nature of the weighted TV flow in image
registration or morphing problems where the goal is to obtain
a geometrical transformation between two images. The regis-
tration transformations are usually obtained in a hierarchical
manner, where an initial registration transformation is obtained
by comparing coarse scales from given images; this map is
then used as an initial guess to register finer scales, and so
on. In this approach to we need different scales of the given
images, which are obtained by the weighted TV flow.

Furthermore, the edge-preservation property of the weighted
TV flow as demonstrated in Fig. 1 is especially useful in



IEEE TRANSACTIONS IN MEDICAL IMAGING, VOL. 11, NO. 4, JULY 2013 6

techniques such as normalized gradient field (NGF) based
registration [24]. The NGF based approach was proposed as an
alternative to the mutual information (MI) based registration
[51]. We note that NGF based methods share some of the same
drawbacks of the MI based registration, namely non-convexity
and multiple local minima; nevertheless, we argue that NGF
based methods are better suited in the presence of shading
artifacts which are common in magnetic resonance images.
This is demonstrated by an explicit example in Appendix A
where NGF based approach gives a correct global solution,
whereas the MI based approach fails completely.

We will show in Sec. IV-D that the multiscale approach
with weighted TV flow produces better results when used in
NFG based technique, compared to other filtering techniques
such as Gaussian, or bilateral filtering (Fig. 7). This is due
to the fact that edges are important in NGF based approach,
which are better preserved with the weighted TV flow than
with other filtering methods. We also show in section IV-E
that using the weighted TV flow in conjunction with MI also
produces results comparable to other filtering methods (Fig.
9).

A. Registration as a Minimization Problem

Mathematically, the registration of a template image f and
a reference image g can be posed as a minimization problem
as follows:

min
w

{
D(f [w], g)

}
, (10)

where w : Rn → Rn represents the geometric transforma-
tion, and D represents a dissimilarity measure between the
transformed template image f [w] and the reference image
g. Possible distance measures D include sum of squared
differences (SSD), cross correlation, mutual information (MI)
[50], [16], and normalized gradient fields (NGF) [24].

Various papers [37], [21], [12], [27], [40] have shown the
use of mutual information as an effective similarity measure.
If the images f and g take values from finite sets {αi}mi=1, and
{βj}mj=1 respectively, then mutual information (MI) between
two images f and g, is defined as follows [50]:

MI(f, g) = −
∑
i

p(αi) log p(αi)−
∑
j

p(βj) log p(βj)

+
∑
i

∑
j

p(αi, βj) log p(αi, βj), (11)

where p(αi), p(βj) represent the marginal probability distri-
bution of grey values αi, βj in images f and g respectively,
and p(αi, βj) represents the joint probability distribution of
grey values (αi, βj) in the overlapped region between images
f and g. Note, to formulate the registration as a minimization
problem, we seek to minimize the negative of the mutual
information, i.e. we use the following dissimilarity measure:

DMI(f [w], g) = −MI(f [w], g).

Mutual information is especially useful for multimodal images
[51], where matching of corresponding intensity patterns is
more important than the actual intensity values. Nevertheless,
there are well-known problems with this approach [24], such

as non-convexity of the registration problem and discrete struc-
ture of the mutual information. An alternative dissimilarity
metric was suggested in [24], which makes use of normalized
gradient fields (NGF) of images. The NGF metric is defined
as follows:

DNGF (f, g) = −
∫

Ω

〈ν(f, x), ν(g, x)〉2dx, (12)

where 〈·, ·〉 denotes the inner product, and ν represents the
normalized gradient of the image,

ν(I, x) :=
∇I(x)

‖∇I(x)‖ρ
, (13)

and ‖·‖ρ for a vector ξ ∈ Rn is defined as

‖ξ‖ρ =

√√√√ n∑
i=1

ξ2
i + ρ2, with ρ :=

η

|Ω|

∫
Ω

|∇I(x)| dx,

where η is estimated noise level and |Ω| is the volume of the
domain. The concept behind the gradient based registration is
derived from the observation that if two images are similar,
many intensity changes should occur at the same spatial
location, which can be detected by a large value of the inner
product between the normalized gradients of the two images.

Nevertheless, the NGF based approach depends on the
faithful preservation of prominent edges, which are often lost
due to noise.

B. Hierarchical Registration Framework

Presence of noise is one of the main problems in image
registration. This is usually addressed by using denoising
as a preprocessing step. Furthermore, to improve the speed,
multiscale registration approach is used [34]. The multiscale
representation of the template and target images is produced by
some smoothing filter. Depending on the smoothing filter used,
the smoothed images may not preserve the structure of images.
For example, isotropic filtering such as Gaussian smoothing
would smooth the edges; whereas, anisotropic filtering such as
bilateral filtering produces a 2-dimensional multiscale family
[48], which makes it difficult to use in practice.

On the other hand, being obtained as a limiting case of a
multiscale decomposition, the weighted TV flow is inherently
multiscale in nature. Indeed, the flow {u(·, t)}t≥0 can be
realized as a family of images in which small-scale features
are successively removed. Thus, for t1 < t0, the image u(·, t0)
is a coarser image than u(·, t1), producing a single-parameter
multiscale family, {u(·, t)}t≥0. This phenomenon is also seen
from the proposition B.3, which states that the total variation
in the image u(·, t) is always decreasing.

These properties enable us to introduce the hierarchical
multiscale registration framework using weighted TV flow,
shown in Fig. 4 (see [30], [32] for registration based on
(BV,L1) decomposition). For this section, the multiscale fam-
ilies generated by the weighted TV flow with f and g as the
initial images are denoted by {uf (·, t)}t≥0 and {ug(·, t)}t≥0,
respectively.

The initial unregistered images f and g are inputs to the
registration framework along with an initial estimate w(0)



IEEE TRANSACTIONS IN MEDICAL IMAGING, VOL. 11, NO. 4, JULY 2013 7

Register

...

w(0)

w(1)

wfinal

...

Unregistered Imagesf g

uf(-,t0)

uf(-,t1)

uf(-,tN)

ug(-,t0)

ug(-,t1)

ug(-,tN)

Register

Register

Fig. 4. Multiscale registration framework is demonstrated. Original input
images are down-sampled and registered at lower scales, before the estimated
registration parameters are propagated as the initial guess to images at higher
resolutions. w(0) represents the initial guess of the optimal registration
parameters, and wfinal corresponds to the final estimate of the registration
parameters.

for the registration transformation. The images uf (·, t0) and
ug(·, t0) are registered, and the registration transformation
w(1) is used as an initial estimate for the registration of
finer scale images uf (·, t1) and ug(·, t1) where t1 < t0. This
process is repeated, and the optimal transformation w(i+1) is
used as the initial estimate for the next finer scale registration
until wfinal is obtained at the finest level.

C. Methods

To quantitatively evaluate the performance of the registra-
tion framework with weighted TV flow, a controlled experi-
ment was carried out in this study. Although the hierarchical
framework presented in section IV-B is applicable for any
type of registration, for the validation purpose we present
simulations for rigid registration. To this effect, a mid short
axis MR (magnetic resonance) cardiac image g0 was acquired
from each of 10 healthy volunteers. The physical locations

of the landmarks within the left and right ventricles were
recorded for each of these 10 images. One of the acquired
cardiac images with the corresponding landmarks is shown in
Fig. 5.

Fig. 5. Manually delineated landmarks in the left and right ventricles, as
indicated by the ‘×’ markings.

Subsequently, we generated a series of known rigid trans-
formations of g0 consisting of rotation θ◦, translation tx1

mm in the x1− direction and translation tx2
mm in the x2−

direction, resulting in the transformed image f0. We identify
this transformation with the vector of the transformation
parameters ω := 〈θ, tx1 , tx2〉.

For each transformation ω := 〈θ, tx1 , tx2〉 of the image g0,
the mean displacement of the landmarks in Fig. 5 is denoted
by d. Fixing the mean displacement d of the landmarks at
d = 5, 10, 15 and 20 mm, we generated 100 transformations
ω := 〈θ, tx1

, tx2
〉 for each value of d, creating 400 distinct

transformed versions f0 for each of the 10 acquired images
g0, resulting in 4000 simulations. The parameters θ, tx1 , and
tx2

are randomly generated with independent and identically
uniform distributions.

To simulate low signal-to-noise ratio (SNR) conditions,
Rician noise R ∼ Rice(ν, σ2) with ν = 0 and σ = 0.1
was added to images f0 and g0 to obtain noisy images f
and g respectively. An example of a low SNR image (i.e.
SNR = 3.16) is illustrated in Fig. 6 (a). The transformed and
noisy image f serves as the template image in the multiscale
registration framework 4, where we solve the minimization
problem (10) to obtain the optimal transformation ωfinal.
Since the physical landmark locations are known, the target
registration error (TRE) can be computed as the mean distance
between the landmark locations of the registered template
image f [ωfinal] and the reference image.

D. Experiments with Hierarchical NGF Based Registration

The results of the hierarchical registration using the NGF
based metric (12) are shown in Fig. 7, where the target
registration errors are shown for four different hierarchical
registration approaches. Specifically, from left to right, each
group of TREs corresponds to hierarchical registration using
NGF without preprocessing, and preprocessing using Gaussian
filtering, bilateral filtering, and weighted TV flow to smooth
the input images respectively. Within each group, 4 bar plots
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(a) Noisy image (b) Denoised with TVα flow

(c) Gradient before denoising (d) Gradient after denoising

Fig. 6. A noisy image f and a weighted TV flow smoothed image uf

are shown in (a) and (b) respectively. The corresponding magnitude of their
gradient images |∇f | and |∇uf | are shown in (c) and (d) respectively.

are shown, the height of each bar represents the mean TRE
for all 10 volunteer datasets after registration recovery from
the transformations that caused an initial displacement of 5
mm, 10 mm, 15 mm or 20 mm from their respective original
landmark locations.

0

5

10

15

20

25

30

35

40

Ta
rg

et
 R

eg
ist

ra
tio

n 
Er

ro
r 

(m
m

)

 

 

NGF
NGF

Ga u ss

NGF
Bi l a t

NGF
TV

α

5mm
10mm
15mm
20mm

Fig. 7. Registration results are shown for different preprocessing techniques.
NGF , NGFGauss, NGFBilat, and NGFTVα represents no preprocess-
ing, Gaussian filtering, bilateral filtering, and weighted TV flow filtering for
each scale of the hierarchical registrations respectively.

As expected, the registration accuracy improved using each
of the 3 denoising methods. However, the best results were
achieved using weighted TV flow for preprocessing. The
Wilcoxon signed-rank test [52] was performed with signif-

icance at the 1% level. Specifically, the TRE results using
each denoising method was compared in turn to the weighted
TV flow (NGFTVα ) method. In each test, the null hypothesis
stated that the NGFTVα method and the other preprocessing
method performed equally well; whereas, the alternative hy-
pothesis stated that NGFTVα performed better by achieving
lower TRE. It was shown at the 1% significance level that the
NGFTVα method achieved better registration accuracy than
NGFGauss ( p < 10−5) , and NGFBilat ( p < 10−5).

Furthermore, in this experiment, weighted TV flow is the
only method that achieved a mean TRE of less than 5 mm for
all four initial displacement categories. This improvement is
due to the fact that weighted TV flow was able to suppress the
Rician noise 6 (b), at the same time preserving the structural
edges in the input images (see Fig. 6 (c)-(d)).

An example of a successful NGF based registration with
weighted TV flow is illustrated in Fig. 8, where an initially
misaligned template image f and a reference image g are
shown in Fig. 8 (a) and (b) respectively. Due to the initial mis-
alignment, the difference image shows misregistered chest wall
structures in Fig. 8 (c). After using the proposed registration
framework, the template image is registered to the reference
image and their difference image |f [ωfinal] − g| (Fig. 8 (d))
no longer displays prominent structures, indicating successful
registration.

(a) Template image f (b) Reference image g

(c) |f − g| (d) |f [ωfinal]− g|

Fig. 8. Registration example: (a) initially misaligned template image f ;
(b) reference image g (c) absolute difference image between the initially
misaligned template and the reference images |f −g|; (d) absolute difference
image between registered template and reference images |f [ωfinal]− g|.

E. Experiments with Hierarchical MI Based Registration

Moreover, the same experiment is performed using a hierar-
chical registration framework with the MI based dissimilarity
measure (11) instead of the NGF based measure (12). The
registration results are shown in Fig. 9. Again, all 3 denois-
ing methods improved the registration accuracy compared to
registration using MI without any preprocessing procedure
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(p < 0.01). Further comparison of the 3 denoising methods
using the Wilcoxon signed-rank test showed no significant dif-
ference between them at the 1% level. However, we observed
that for experimental trials with a large initial misalignment of
d = 20 mm, the chance of converging to a wrong solution was
higher in the case of preprocessing with Gaussian or bilateral
filters as opposed to using weighted TV flow. Specifically,
the percentage of trials that achieved a TRE > 10 mm after
registration were 5.2%, 4.5%, and 2.5% for Gaussian, bilateral,
and weighted TV flow preprocessing respectively. As a result,
reduced standard deviations of the TREs are observed in Fig.
9. Therefore, weighted TV flow has been demonstrated to
improve the robustness of mutual information (MI) based
registration in cases of substantial initial misalignment.

We remark that even where the MI based registration
outperforms NGF based registration (due to absence of clear
edges), the use of weighted TV flow for preprocessing is
beneficial.
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Fig. 9. Registration results are shown for different preprocessing techniques.
MI , MIGauss, MIBilat, and MITVα represents no preprocessing, Gaus-
sian filtering, bilateral filtering, and weighted TV flow filtering for each scale
of the hierarchical registrations respectively.

V. CONCLUSION

We realized the weighted TV flow as a limiting case of
a multiscale decomposition. In this setting the flow can be
viewed as successive removal of the small-scale structures.
This feature was successfully used in image denoising. The
weighted TV flow was also shown to be better at edge preser-
vation than the standard TV flow and the bilateral filtering.
Moreover, the speed of the flow could be controlled through
the speed function, which could be effectively used for real
time denoising.

The inherently multiscale nature of the weighted TV flow
enables us to extract different scales from an image. Indeed
the weighted TV flow generates a single parameter multiscale
family. This feature was successfully employed in a multiscale
registration application. Due to the edge-preserving nature of
the weighted TV flow, we observed statistically significant

improvement in gradient based registration. We also showed
that the weighted TV flow produced comparable results to
other smoothing methods when used in conjunction with the
mutual information based registration.

APPENDIX A
MUTUAL INFORMATION VERSUS NORMALIZED GRADIENT

FIELD

In this section, we argue that in presence of a phenomenon
such as signal intensity shading artifact in magnetic resonance
imaging [25], registration using mutual information can pro-
duce an incorrect solution, whereas gradient based registration
prevails. To this effect, we produce an explicit example below.

Let Ω be the domain, Ω = [−1, 1] × [−1, 1]. Let A ⊂ Ω
and B ⊂ Ω be two square regions defined by A = [− 1

6 ,
1
6 ]×

[− 1
6 ,

1
6 ], B = [− 5

6 ,−
1
2 ]× [ 1

2 ,
5
6 ]. We construct a simple image

function f ,

f = χΩ + χA +
1

2
χB ,

where χΩ, χA and χB indicate the characteristic functions on
Ω, A and B respectively. We let g be the image obtained by
rotating f counterclockwise through 90◦. Now let us construct
a multiplier function

ψ(x1, x2) = 1 +
(x2 + 1)2

16

to obtain images ψf and ψg as shown below in Fig. 10. Such
type of multiplicative function can be observed in MR imaging
due to coil sensitivity drop-off.

For such function ψ, with 1 ≤ ψ ≤ 5
4 , we would expect

that a robust registration metric would succeed in registering
the images ψf and ψg shown in Fig. 10. Nevertheless, as we
rotate ψf , and calculate the distance DMI between the rotated
ψf and ψg, a global minimum is observed at θ = 0◦, which
is clearly incorrect; in fact, DMI attains a maximum at the
correct solution, θ = 90◦ (see Fig. 11). The failure of the MI
based registration is due to the fact that it attempts to minimize
the entropy of the joint histogram, which is distorted due to
the sensitivity function ψ.

Now we look at the registration using normalized gradient
fields (NGF) metric (12). As opposed to the mutual infor-
mation, we observe that registration using NGF has a global
minimum at θ = 90◦ (see Fig. 11). This is due to the fact that
the NGF emphasizes matching of edges in two images. (Note
that we need to use ρ in (13) such that the normalized gradient
ν at prominent edges is much higher compared to the smoother
region in the image. For ψf, ψg ∈ [0, 1] we used ρ = 0.01.)

APPENDIX B
SPEED AND SCALE RELATED PROPERTIES OF THE

WEIGHTED TV FLOW

In this Appendix we give intuitive derivations of the speed
and scale related properties of the multiscale weighted TV
flow. We use the characterization of the subdifferential ∂J(u)
discussed in section II-A and the boundary condition [z, ν] = 0
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ψf ψg

ψ

Fig. 10. Synthetic images ψf , ψg and the multiplier function ψ representing
phenomenon similar to coil shading.

on ∂Ω to facilitate the integration in space. In particular, for
u, φ ∈ BVα(Ω) ∩ L2(Ω) we have

−
∫

Ω

div
(α∇u
|∇u|

)
u = |u|TVα(Ω),

−
∫

Ω

div
(α∇u
|∇u|

)
φ ≤ |φ|TVα(Ω).

First, we compute the α∗ norm (9) of the speed of the weighted
TV flow. To this effect we prove the following proposition.

Proposition B.1. For the multiscale weighted TV flow (7) the
α∗ norm of the rate of change of the flow u(·, t) is:∥∥∥∂u

∂t
(·, t)

∥∥∥
α∗

= µ(t). (14)

Proof. We first observe that integrating (7) with ϕ ∈
BVα(Ω) ∩ L2(Ω) in space yields∣∣∣(∂u

∂t
(·, t), ϕ

)
L2(Ω)

∣∣∣ ≤ µ(t)|ϕ|TVα(Ω).

If ϕ = u(·, t), we get an equality, and the conclusion follows.

The equation (14) asserts that the speed of the multiscale
flow (7), measured in α∗ norm is exactly equal to µ(t). This
property can be used for fast denoising by manipulating the
speed function µ(t). As v(·, t) = f − u(·, t), it follows from
the above Proposition B.1 that∥∥∥∂v

∂t
(·, t)

∥∥∥
α∗

= µ(t). (15)
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Fig. 11. Dissimilarity measures: a) DMI and b) DNGF between ψf
rotated by θ◦ and ψg. Correct alignment between ψf and ψg images is
a counterclockwise rotation of 90◦ applied to ψf .

Now, we consider the rate of change of the L2-energy and of
the TVα-seminorm of the multiscale flow u(·, t). Integrating
(7) with u(·, t) in space we get∫

Ω

u
∂u

∂t
dx ≡ 1

2

d

dt
‖u(·, t)‖2L2(Ω)

= µ(t)

∫
Ω

div
(α∇u(·, t)
|∇u(·, t)|

)
u(·, t) dx

≡ −µ(t)|u(·, t)|TVα(Ω).

Thus, we have

d

dt
‖u(·, t)‖2L2(Ω) = −2µ(t)|u(·, t)|TVα(Ω).

As µ(t) > 0 for all t, we note that the L2 energy of the BVα-
part never increases. We state this as a proposition.

Proposition B.2. For the multiscale TV flow (7) the L2 energy
of the function u is non-increasing for all times t.

We also note that the weighted BV seminorm of the flow
u(·, t) is also non-increasing. To this effect we have the
following proposition.
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Proposition B.3. For the multiscale weighted TV flow (7) the
weighted BV seminorm of u(·, t) is non-increasing for any
time t.

Proof. For the PDE (7) we look at the time derivative of
|u(·, t)|TVα(Ω).

d

dt
|u(·, t)|TVα(Ω) =

∫
Ω

α∇u
|∇u|

∂

∂t
(∇u) dx

=

∫
Ω

α∇u
|∇u|

∇
(∂u
∂t

)
dx

= −
∫

Ω

div
(α∇u(·, t)
|∇u(·, t)|

)∂u
∂t

dx

= −
∫

Ω

1

µ(t)

(∂u
∂t

)2

dx

≤ 0.

The fourth equality follows from (7), and the last inequality
follows as µ(t) > 0 for all t.

Now, we look at the α∗ norm of the residual of the weighted
TV flow.

Proposition B.4. For the weighted TV flow (7) we define the
residual v(·, t) := f − u(·, t). Then we have the following
inequality for its star-norm

‖v(·, t)‖α∗ ≤
∫ t

0

µ(s) ds.

Proof. For a function ϕ ∈ BVα(Ω) ∩ L2(Ω) we have

|(v(·, t), ϕ)L2(Ω)|

=
∣∣∣ ∫

Ω

∫ t

0

µ(s) div
( ∇u(·, s)
|∇u(·, s)|

)
dsϕ dx

∣∣∣
≤
∣∣∣ ∫ t

0

µ(s)|ϕ|TVα(Ω) ds
∣∣∣

= |ϕ|TVα(Ω)

∫ t

0

µ(s) ds.

The conclusion then follows from taking the supremum over
ϕ ∈ BVα(Ω).

Remark B.1 (Bound on the star-norm of an image). We have
seen that the proposed multiscale TV flow (7) is a scaled
version of the standard TV flow (8) with the scaling function
γ(t) =

∫ t
0
µ(s) ds. We see from the Proposition B.4 that this

scaling function is the upper bound on the star-norm of the
residual. Moreover, we know that v(·, T ) = f −favg for some
finite time T . Hence, we have∥∥f − favg∥∥α∗ = ‖v(·, T )‖α∗ ≤

∫ T

0

µ(s) ds.

In particular, if the function f is normalized such that favg =
0, then

‖f‖α∗ = ‖v(·, T )‖α∗ ≤
∫ T

0

µ(s) ds.

This gives us a novel way of looking at the star-norm of a
function f , in terms of the speed function µ(t).
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